
COOPERATION ON CLIMATE CHANGE UNDER ECONOMIC LINKAGES

Jan Kersting, Vicki Duscha, Matthias Weitzel EAERE Conference, 25 June 2015, Helsinki

Background: Game-theoretic models of international climate negotiations

- Countries choose GHG emission level to optimize their own utility
 - Mitigation costs of emission reduction measures
 - Damages from climate change
- Countries may form coalitions. A coalition optimizes joint utility of all its members.
- Different concepts exist regarding the stability of coalitions. They come to vastly different results.

Background: Stability concepts

- Internal & External Stability (Barrett, Carraro, Finus, etc.)
 - Countries start at uncooperative equilibrium.
 - At each step, countries check if joining or leaving a coalition improves their utility, assuming no further moves happen -> "free-riding" incentives
 - Result: only small coalitions are stable. Confirmed by numerical models.
 - Modified models (incl. technology transfer, trade restrictions, border-carbonadjustments, deposit-refund-system, etc.) lead to more optimistic results
- Core Stability (Chander, Tulkens, Eyckmans, Bréchet)
 - Countries start at agreement proposal involving all countries (the "grand coalition" N)
 - Each possible coalition of countries compares agreement to its own utility (value), assuming a rejection would cause grand coalition to fall apart
 - unanimity rule, similar to UNFCCC
 - no "free-riding"
 - Result: a stable agreement always exists. Confirmed by numerical models.
 - Modified models: N/A

Agenda

- Background
- A weakness of the Core Stability concept
- Methodology
- Results
- Conclusion

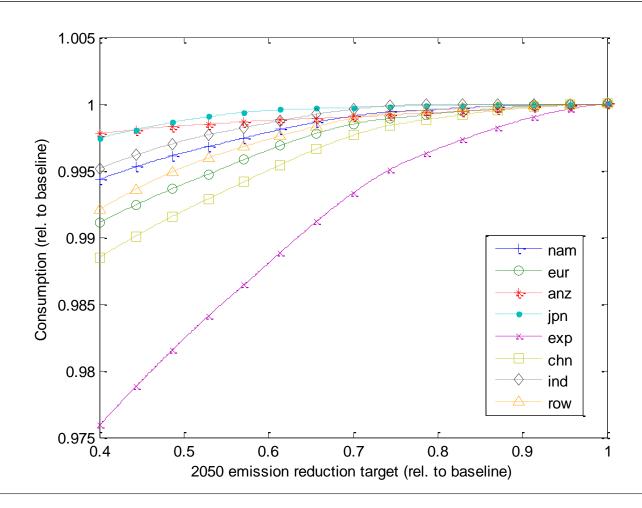
A weakness of the Core Stability concept

- Models are based on balancing of consumption loss (C) and damages from climate change
 (D)
- In the models using the Core Stability concept, consumption loss only depends on each countries own emissions

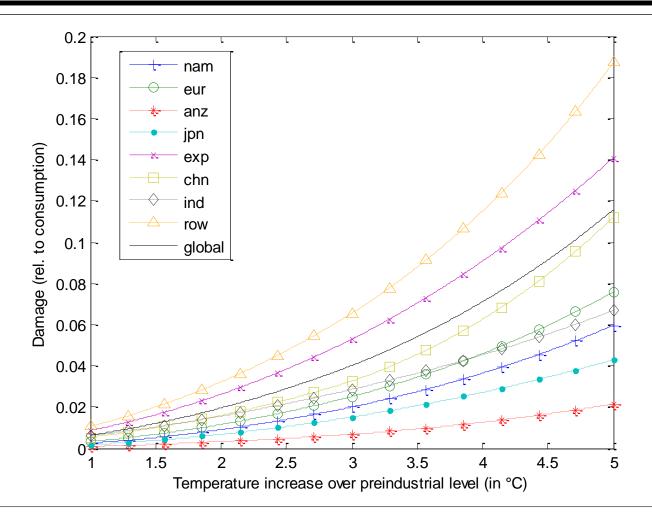
$$C_i = C_i(E_i)$$

- This assumption is not realistic: international competitiveness, fossil fuel prices, technological spillovers / learning curves, etc.
- Solution: incorporate economic effects of emission reduction measures in other countries

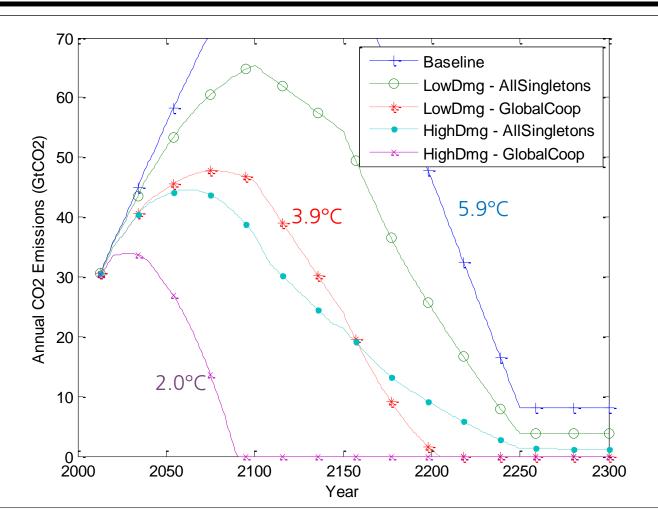
$$C_i = C_i(E), \qquad E = (E_1, \dots, E_n)$$

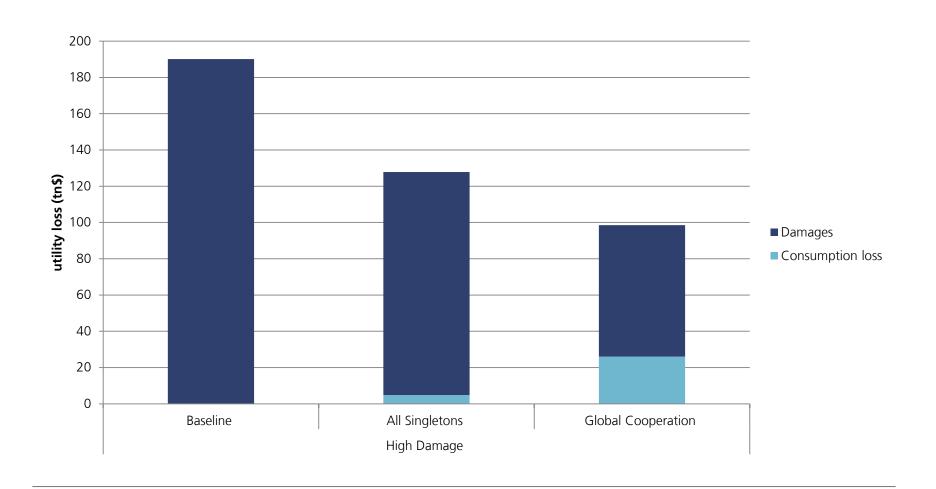

Methodology

- Use global CGE model DART to calculate the consumption function
 - 8 regions: NAM, EUR, ANZ, JPN, EXP, CHN, IND, ROW
 - Time frame: 2013 2050. Extrapolation of emissions to 2300 in order to represent long-term damages from climate change
 - Output: consumption changes for different emission reduction targets for each of the
 255 possible coalitions
- Damage functions from RICE model (Nordhaus 2010), based on cumulative emissions for each year
 - For warming of 2°C, RICE predicts global damages of 2.0% of consumption
 - IPCC report: 0.2%-2.0% damages for 2°C warming
 - Additional "Low Damages Scenario" with damages 10% as high as in RICE


Methodology II

- Calculation of equilibrium for each coalition
- Control variable: emission target in 2050 (rel. to baseline)
- Parallel optimization of targets for the coalition and for all "outsiders"
- Utility = Consumption Damages, for each coalition in equilibrium, defines cooperative game
- Check existence of stable global agreement
 - Calculate "best partition" of the game (partition = set of disjoint coalitions)
 - Compare with grand coalition
 - If best partition is better than grand coalition, then no stable agreement exists.


Consumption functions for "singleton" coalitions


Damage functions

Benchmark cases - Global CO2 emissions

Impacts of global cooperation – High Damages Scenario

Low Damages Scenario

		2050 emission target (rel. to baseline)	Utility loss (tn\$2007)
Partition "Global Cooperation"		80.26%	16.65
Case "Global Cooperation"	N	80.26%	16.65
Partition "All except EUR, ANZ, EXP"		82.05%	16.17
Case "Partial Cooperation"	N\{EUR, ANZ, EXP}	75.71%	12.62
	{EUR}	100.00%	1.29
Case "All Singletons"	{ANZ}	100.00%	0.03
	{EXP}	100.00%	2.24

- Grand coalition is not best partition
- > no stable global agreement exists, contrary to classic theoretical model

Low Damages Scenario II

- Global cooperation creates surplus (on global level)
- Surplus has to be divided to cover two cases simultaneously
 - Case 1: "All Singletons"
 - Fossil fuel exporters (ANZ, EXP) suffer from drop in fossil fuel prices, if emissions are reduced globally -> prefer no cooperation
 - Due to unanimity requirement, they can block any global agreement, which does not compensate them adequately
 - Compensation would have to come from regions, which benefit from global emission reductions
 - Case 2: "Partial Cooperation"
 - These regions have alternative to form "coalition of the willing"
 - Global emissions are only slightly higher than in case of global cooperation
 - Additional benefit from move to global cooperation not enough to compensate fossil fuel exporters
- Europe: high emission reduction costs, low damages -> prefers "All Singletons" to joining coalition of the willing

High Damages Scenario

	,	Utility loss of coalition or partition (tn\$2007)
Partition "Global Cooperation"	51.28%	98.56
N	51.28%	98.56
Partition "All except EXP"	57.99%	110.10
N\{EXP}	51.11%	92.64
{EXP}	95.41%	17.46
Partition "All except EUR, ANZ, EXP"	57.32%	115.31
N \ {EUR, ANZ, EXP}	50.36%	87.72
{EUR}	94.14%	9.95
{ANZ}	100.00%	0.18
{EXP}	95.41%	17.46

- Grand coalition is best partition -> stable agreement is possible
- High damages lead to high gains of cooperation
- Fossil fuel exporters region: second highest damages of all regions
- Emission target of "coalition of the willing" is almost unaffected by inclusion of EUR, ANZ and EXP

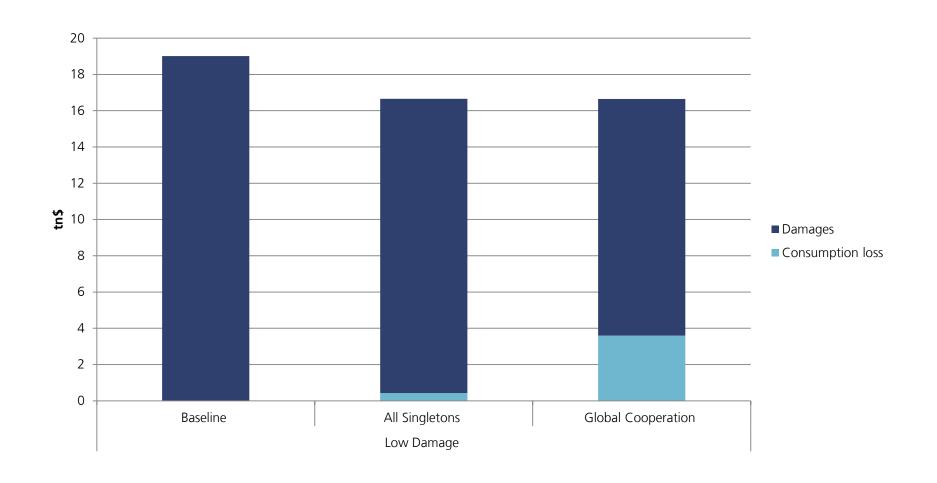
Conclusion

- Current models using the core stability concept miss inter-regional economic implications of emission reduction measures
- Our model incorporates these effects
- In a scenario with low damages, no stable global agreement is possible in the resulting cooperative game, in contrast to the theoretical model and existing numerical models
- Global cooperation is blocked by fossil fuel exporters, who lose revenue if international emission reduction measures are enacted
- This result meshes better with models using the internal and external stability concept
- In a scenario with high damages, global cooperation is still possible, as the gains from cooperation are substantially higher

Thank you!

Contact:

Jan Kersting


Fraunhofer Institute for Systems and Innovation Research ISI

Mail: jan.kersting@isi.fraunhofer.de

BACKUP

Impacts of global cooperation – low damages

Targets

	Low damages scenario		High damages scenario	
	2050 emission target (rel. to baseline)	Utility loss of coalition or partition (tn\$)	2050 emission target (rel. to baseline)	Utility loss of coalition or partition (tn\$)
Partition "Global Cooperation"	80.26%	16.65	51.28%	98.56
N	80.26%	16.65	51.28%	98.56
Partition "All Singletons"	92.69%	16.66	78.51%	127.85
{NAM}	100.00%	1.39	83.26%	10.72
{EUR}	100.00%	1.29	94.14%	9.95
{ANZ}	100.00%	0.03	100.00%	0.18
{JPN}	100.00%	0.11	99.49%	0.87
{EXP}	100.00%	2.24	95.41%	17.46
{CHN}	98.28%	1.41	77.12%	10.84
{IND}	77.79%	0.92	71.13%	7.30
{ROW}	84.26%	9.29	60.82%	70.53

Example of cooperative game with empty core

Coalition	Player			Value of coalition
	1	2	3	
{1}	1	1	2	1
{2}	1	1	2	1
{3}	1	1	2	2
{1,2}	2	2	1	4
{1,3}	2	1	2	4
{2,3}	1	2	2	4
{1,2,3}	1.5	1.5	2.5	5.5

Core-stable imputation in the high damages scenario (utility loss in tn\$)

Region	Allocated amount
NAM	5.96
EUR	5.19
ANZ	-0.18
JPN	0.50
EXP	12.70
CHN	6.08
IND	2.54
ROW	65.77