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 Countries choose GHG emission level to optimize their own utility 

 Mitigation costs of emission reduction measures 

 Damages from climate change 

 Countries may form coalitions. A coalition optimizes joint utility of all its members. 

 

 Different concepts exist regarding the stability of coalitions. They come to vastly different 
results. 

Background:  Game-theoret ic  models  of  
internat iona l  c l imate  negot iat ions  
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 Internal & External Stability (Barrett, Carraro, Finus, etc.) 

 Countries start at uncooperative equilibrium. 

 At each step, countries check if joining or leaving a coalition improves their utility, 
assuming no further moves happen -> “free-riding” incentives 

 Result: only small coalitions are stable. Confirmed by numerical models. 

 Modified models (incl. technology transfer, trade restrictions, border-carbon-
adjustments, deposit-refund-system, etc.) lead to more optimistic results 

 Core Stability (Chander, Tulkens, Eyckmans, Bréchet) 

 Countries start at agreement proposal involving all countries (the “grand coalition” N) 

 Each possible coalition of countries compares agreement to its own utility (value), 
assuming a rejection would cause grand coalition to fall apart 

 unanimity rule, similar to UNFCCC 

 no “free-riding” 

 Result: a stable agreement always exists. Confirmed by numerical models. 

 Modified models: N/A 

Background:  Stab i l i ty  concepts  



© Fraunhofer ISI 

Seite 4 
   

 Background 

 A weakness of the Core Stability concept 

 Methodology 

 Results 

 Conclusion 

 

Agenda 
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 Models are based on balancing of consumption loss (C) and damages from climate change 
(D) 

 In the models using the Core Stability concept, consumption loss only depends on each 
countries own emissions 

 

 This assumption is not realistic: international competitiveness, fossil fuel prices, 
technological spillovers / learning curves, etc. 

 Solution: incorporate economic effects of emission reduction measures in other countries 

A weakness  of  the  Core Stab i l i ty  concept  
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 Use global CGE model DART to calculate the consumption function 

 8 regions: NAM, EUR, ANZ, JPN, EXP, CHN, IND, ROW 

 Time frame: 2013 – 2050. Extrapolation of emissions to 2300 in order to represent 
long-term damages from climate change 

 Output: consumption changes for different emission reduction targets for each of the 
255 possible coalitions 

 Damage functions from RICE model (Nordhaus 2010), based on cumulative emissions for 
each year 

 For warming of 2°C, RICE predicts global damages of 2.0% of consumption 

 IPCC report: 0.2%-2.0% damages for 2°C warming 

 Additional “Low Damages Scenario“ with damages 10% as high as in RICE 

Methodology  
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 Calculation of equilibrium for each coalition 

 Control variable: emission target in 2050 (rel. to baseline) 

 Parallel optimization of targets for the coalition and for all “outsiders” 

 Utility = Consumption – Damages, for each coalition in equilibrium, defines cooperative 
game 

 Check existence of stable global agreement 

 Calculate “best partition” of the game (partition = set of disjoint coalitions) 

 Compare with grand coalition 

 If best partition is better than grand coalition, then no stable agreement exists. 

Methodology  I I  
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Consumpt ion funct ions  for  “s ing leton” 
coa l i t ions  
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Damage funct ions  
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Benchmark cases  –  Globa l  CO2 emiss ions  
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Impacts  of  g loba l  cooperat ion  –   
H igh Damages  Scenar io  
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 Grand coalition is not best partition 

 no stable global agreement exists, contrary to classic theoretical model 

Low Damages  Scenar io  

2050 emission target 

(rel. to baseline) 

Utility loss 

(tn$2007) 

Partition “Global Cooperation” 80.26% 16.65 

Case “Global Cooperation” N 80.26% 16.65 

Partition “All except EUR, ANZ, EXP” 82.05% 16.17 

Case “Partial Cooperation” N \ {EUR, ANZ, EXP} 75.71% 12.62 

Case “All Singletons” 

{EUR} 100.00% 1.29 

{ANZ} 100.00% 0.03 

{EXP} 100.00% 2.24 
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 Global cooperation creates surplus (on global level) 

 Surplus has to be divided to cover two cases simultaneously 

 Case 1: “All Singletons“ 

 Fossil fuel exporters (ANZ, EXP) suffer from drop in fossil fuel prices, if emissions are 
reduced globally -> prefer no cooperation 

 Due to unanimity requirement, they can block any global agreement, which does 
not compensate them adequately 

 Compensation would have to come from regions, which benefit from global 
emission reductions 

 Case 2: “Partial Cooperation” 

 These regions have alternative to form “coalition of the willing” 

 Global emissions are only slightly higher than in case of global cooperation 

 Additional benefit from move to global cooperation not enough to compensate 
fossil fuel exporters 

 Europe: high emission reduction costs, low damages -> prefers “All Singletons” to joining 
coalition of the willing 

Low Damages  Scenar io  I I  
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 Grand coalition is best partition -> stable agreement is possible 

 High damages lead to high gains of cooperation 

 Fossil fuel exporters region: second highest damages of all regions 

 Emission target of “coalition of the willing” is almost unaffected by inclusion of EUR, ANZ 
and EXP 

High Damages  Scenar io  

2050 emission target (rel. 

to baseline) 

Utility loss of coalition or 

partition (tn$2007) 

Partition “Global Cooperation” 51.28% 98.56 

N 51.28% 98.56 

Partition “All except EXP” 57.99% 110.10 

N \ {EXP} 51.11% 92.64 

{EXP} 95.41% 17.46 

Partition “All except EUR, ANZ, EXP” 57.32% 115.31 

N \ {EUR, ANZ, EXP} 50.36% 87.72 

{EUR} 94.14% 9.95 

{ANZ} 100.00% 0.18 

{EXP} 95.41% 17.46 
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 Current models using the core stability concept miss inter-regional economic implications 
of emission reduction measures 

 Our model incorporates these effects 

 In a scenario with low damages, no stable global agreement is possible in the resulting 
cooperative game, in contrast to the theoretical model and existing numerical models 

 Global cooperation is blocked by fossil fuel exporters, who lose revenue if international 
emission reduction measures are enacted 

 This result meshes better with models using the internal and external stability concept 

 In a scenario with high damages, global cooperation is still possible, as the gains from 
cooperation are substantially higher 

Conc lus ion  
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Thank you! 
 

 

 

 

Contact: 

Jan Kersting 

Fraunhofer Institute for Systems and Innovation Research ISI 

Mail: jan.kersting@isi.fraunhofer.de 
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BACKUP 
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Impacts  of  g loba l  cooperat ion  –   
low damages  
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Low damages scenario High damages scenario 

2050 

emission 

target (rel. to 

baseline) 

 Utility loss of 

coalition or 

partition (tn$) 

2050 

emission 

target (rel. to 

baseline) 

Utility loss of 

coalition or 

partition (tn$) 

Partition “Global Cooperation” 80.26% 16.65 51.28% 98.56 

N 80.26% 16.65 51.28% 98.56 

Partition “All Singletons” 92.69% 16.66 78.51% 127.85 

{NAM} 100.00% 1.39 83.26% 10.72 

{EUR} 100.00% 1.29 94.14% 9.95 

{ANZ} 100.00% 0.03 100.00% 0.18 

{JPN} 100.00% 0.11 99.49% 0.87 

{EXP} 100.00% 2.24 95.41% 17.46 

{CHN} 98.28% 1.41 77.12% 10.84 

{IND} 77.79% 0.92 71.13% 7.30 

{ROW} 84.26% 9.29 60.82% 70.53 

Targets  
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Coalition Player Value of coalition 

1 2 3 

{1} 
1 1 2 1 

{2} 
1 1 2 1 

{3} 
1 1 2 2 

{1,2} 
2 2 1 4 

{1,3} 
2 1 2 4 

{2,3} 
1 2 2 4 

{1,2,3} 
1.5 1.5 2.5 5.5 

Example  of  cooperat ive  game with  empty  
core  
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Region Allocated 

amount 

NAM 
5.96 

EUR 
5.19 

ANZ 
-0.18 

JPN 
0.50 

EXP 
12.70 

CHN 
6.08 

IND 
2.54 

ROW 
65.77 

Core-s tab le  imputat ion  in  the  h igh damages  
scenar io  (ut i l i t y  loss  in  tn$)  


